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1. Time-homogeneous branching processes
e Galton-Watson processes (GW-processes)

Given Zj, we define
Zp_1
Zy = Z gn—l(i)ﬂ for n Z 1,
=1

where {£,(¢) : n = 0,1,...;¢ = 1,2...} are i.i.d. random variables ~ g (the
generating function).



1. Time-homogeneous branching processes
e Continuous-state branching processes (CB-processes)

We call X a CB-process with branching mechanism ¢ if it has transition semigroup
(Qt)tZ() defined by

/ e NQy(z, dy) = e, A >0, (1)
0
where the cumulant semigroup (v );>¢ is determined by
t
w) =A= [ Be.))ds, A t20, @
0
and ¢ has the representation
d(z) = bz + c2® + / (e™** = 1 4+ zu)m(du), 3)
0

where ¢ > 0, b are constants and (u Au?)m(du) is a finite measure on (0, o).



1. Time-homogeneous branching processes
e Continuous-state branching processes (CB-processes)
e Scaling limits

CB-processes are weak limits of rescaled GW-processes. See, e.g. Li ('06/11).



1. Time-homogeneous branching processes

e Continuous-state branching processes (CB-processes)
e Scaling limits

e Stochastic equations

W (ds, du): Gaussian white noise with intensity dsdu;

N (ds,dz, du): compensated Poisson random measure with intensity dsr.(dz=)duw.

Theorem 1. (Dawson and Li (06/°12)) There is a pathwise unique positive
(strong) solution to

t t X
X = w—/ bXs_ds + \/20/ / W (ds, du)
0 o Jo

t poo X,
+ / / / zN (ds,dz,du). “4)
0o JoO 0

The solution { X (t)} of (4) is a CB-process with initial value x and branching
mechanism ¢.



2. Time-inhomogeneous branching processes
e GW-processes in varying environments (GWVE-processess)

Given Zj, we define

Zp—1
Zy = Z gn—l(i)7 for n Z 1,
i=1

where {£,(3) : ¢« = 1,2...} are i.i.d. random variables ~ g,, (the generating
function) forn > 0.



2. Time-inhomogeneous branching processes
e GW-processes in varying environments (GWVE-processess)

Given Zj, we define

Zp—1
Zy = Z gn—l(i)ﬂ for n Z 1,
i=1

where {£,(3) : ¢« = 1,2...} are i.i.d. random variables ~ g,, (the generating
function) forn > 0.

Corresponding Continuous-state Processes?



2. Time-inhomogeneous branching processes

Bansaye and Simatos ('15) established a sufficient condition for a sequence of
GWVE-processes to converge weakly. They considered the following scaling.

{Zin:n 20} Zim = S8 Grna1(D). ({Gan () 1= 1,20} ~ &)
{7}:t — vk (t) is an increasing, cadlag and onto function from [0, co) to N..
{Xk(t) H 7 Z 0}: Xk(t) = Zk,'yk(t)/k-

{up(r,t, \)}: P(e X0 | X (r) = z) = exp{—zur(r,t,\)}.



2. Time-inhomogeneous branching processes

Bansaye and Simatos ('15) established a sufficient condition for a sequence of
GWVE-processes to converge weakly. They considered the following scaling.

{Zin i1 2 O} Zin = D277 Erno1(6): ((en(@) 1= 1,2} ~ &in)
{7}:t — vk (t) is an increasing, cadlag and onto function from [0, co) to N..
{Xk(t) : t > 0}: Xp(t) = Zg 1)/ k-

{ur(r,t, ) }: P(e™ X+ M| Xy (r) = 2) = exp{—zuk(r, t,\)}.

Define vy, ([z, 0)) = kP (&k,n > kx + 1) and

ap(t) = SO [ 22 sun(da),

Br(®) = O™ [ 52 vk a(d),

vie((0, 8] X [z, 00)) = XSOy ([, 00)).



2. Time-inhomogeneous branching processes

Bansaye and Simatos ('15) established a sufficient condition for a sequence of
GWVE-processes to converge weakly. They considered the following scaling.

{Zkm :n >0} Zi = S22 g no1(6). ({Eam(3) 11 =1,2..} ~ &)
{7}:t — vk (t) is an increasing, cadlag and onto function from [0, co) to N..
{Xk(t) .t Z 0}: Xk.(t) =] Zk,'yk(t)/k-

{up(r,t, \)}: P(e X0 | X (r) = z) = exp{—zur(r,t,\)}.

Thenfor0o < r <'t,

ug(r,t, A) = A—I—/ ug(s,t, N)ag(ds) — /t(uk(s t,1))26k(ds)

/ / —zuk(stz\) 1+ zuk(s, t, )‘) (zuk(s,t, )‘))2
1+ 22 2(1 + 22)

)l/k(dsdz).



2. Time-inhomogeneous branching processes

Foro < r <t,

ug(r,t,A) = )\+/ ug(s,t, N)ag(ds) — /t(uk(s t, )28k (ds)

o—2un(s zug(s, t, )\) (zur(s,t,N))?
/ / r(stA) _ 1 4 f—|—z2 2?1+z2) )uk(dsdz).

Bansaye and Simatos ('15) introduced some assumptions on v, ,,, ok, B and vg.
For example, there exists a cadlag function of locally finite variation « such that

fort > 0, ag(t) = Y701 Vi (dz) — a(t) as k — oo;

xT
142
for t > 0 satisfying Aa(t) # 0, Aag(t) > Aa(t) as k — oo.
Similar with «, they assumed that there exists an increasing cadlag function 3 and

a positive measure v on (0, co)? which can be the pointwise limits of the related
sequences.



2. Time-inhomogeneous branching processes

Foro < r <t,

ug(r,t,A) = )\+/ ug(s,t, N)ag(ds) — /t(uk(s t, )28k (ds)

/ / e—Zuk(sit:A) _ g + zug (s, t, >‘) (zuk(s, t, A))2
14 22 2(1 + 22)

)uk(dsdz).
Bansaye and Simatos ('15) also introduced a bottleneck point o(%):

p(t) =sup{s <t: hm inf 1nf uk(y,t A) = 0}.

k—oo s<y<

Under the assumptions on vy, ok, B and v, they characterized the behavior
of the limit process on [e (%), t].



2. Time-inhomogeneous branching processes

Foro < r <t,

ug(r,t, A) = )\—I—/ ug(8,t, A)ag(ds) — /t(uk(s t,2))2B(ds)

_/ / e—zuk(s,t,)\) -1 + zuk(s t )‘) (ZUk(S, t’ A))2
0 14+ 22 2(1 + 22)

)Vk(dsdz).

e The cumulant semigroup (¢ )¢>r

ForA > o0andr € [p(t),t],

wrs(A) = A+ / B e — / ot (V)23 (ds)

// —zustm _|_Z1u:_t(z))y(dsdz), 5)

where t — B(t) = B(t) — f(f 1 J_%V(dsdz) is continuous and increasing
and a., 3, v depend on the sequence of rescaled processes.



2. Time-inhomogeneous branching processes
e The cumulant semigroup (¢ )¢>r

For A > 0and r € [p(t),t],

t

wrs(A) = A+ / O — / a1 (V)23 (ds)

™

// (emmuee® — 1+zu1t( *))V(dsdz)
Z

e The convergence of the rescaled processes

Suppose that zx, — =, (Xk(s) : » < s < t) under P(:| Xk () = xx) is tight for
any r € [0, t]. Bansaye and Simatos ('15) showed that the weak limit process of
(Xi(s) :r < s < t)forr € [p(t),t] has the cumulant semigroup (¢ )¢>p-



2. Time-inhomogeneous branching processes
e The cumulant semigroup (¢ )¢>r

For A > 0and r € [p(t),t],

t

ure(A) = A+ / woeNa(ds) = [ uns(3)?(ds)

™

// (emmuee® — 1+zu1t( *))"(dsdz)
Z

e The convergence of the rescaled processes

Suppose that zx, — =, (Xk(s) : » < s < t) under P(:| Xk () = xx) is tight for
any r € [0, t]. Bansaye and Simatos ('15) showed that the weak limit process of
(Xi(s) :r < s < t)forr € [p(t),t] has the cumulant semigroup (¢ )¢>p-

Existence of such process?



2. Time-inhomogeneous branching processes
e Integral evolution equation (first moment condition)

Suppose that b is a cadlag function of locally finite variation, ¢ is an increasing
continuous function, m is a o-finite measure on (0, co)? satisfying f(f Iz A
2%)m(ds,dz) < oo fort > 0.

In addition for t > 0, Ab(t) + [5° zm({t},dz) < 1.



2. Time-inhomogeneous branching processes
e Integral evolution equation (first moment condition)

Suppose that b is a cadlag function of locally finite variation, ¢ is an increasing
continuous function, m is a o-finite measure on (0, co)? satisfying f(f Iz A
2%)m(ds,dz) < oo fort > 0.

In addition for ¢t > 0, Ab(t) + [;° zm({t},dz) < 1.

Theorem 2. Foreveryt, A > 0, there is a unique bounded positive solution r €
[0,t] — v,t(A) to

Urt(A) = A — /t vs,t(A)b(ds) — /t vs £ (A)2c(ds)
/ / T -1 4 ’vs,t(A)z)m(ds, dz).



2. Time-inhomogeneous branching processes
e Integral evolution equation (first moment condition)

Suppose that b is a cadlag function of locally finite variation, ¢ is an increasing
continuous function, m is a o-finite measure on (0, co)? satisfying f(f Iz A
2%)m(ds,dz) < oo fort > 0.

In addition for ¢t > 0, Ab(t) + [;° zm({t},dz) < 1.

Theorem 2. Foreveryt, A > 0, there is a unique bounded positive solution r €
[0,t] — vrt(X) tO

vt (X)) = )\—/tvst()\)b(ds) —/t vs,t(A)%c(ds)
/ / —ve:(N)z _ 1—|—'vs,t()\)z>m(ds,dz).(6)

Ifb(ds) = bds, ¢(ds) = ¢ ds and m(ds,dz) = dsm(dz), then (6) =
).



2. Time-inhomogeneous branching processes
e Integral evolution equation (first moment condition)

Suppose that b is a cadlag function of locally finite variation, ¢ is an increasing
continuous function, m is a o-finite measure on (0, co)? satisfying f(f Iz A
2%)m(ds,dz) < oo fort > 0.

In addition for ¢t > 0, Ab(t) + [;° zm({t},dz) < 1.

Theorem 2. Foreveryt, A > 0, there is a unique bounded positive solution r €
[0,t] — vrt(A) to

Urt(A) = A— /t vs,t(A)b(ds) — /t vs £ (A)2e(ds)
/ / —’Ust(>\)z 1+ vs,t()\)z>m(ds,dz).

The solution satisfies the semigroup property

Vpt(AX) = Vp 5 0 V5 £(A) = Vps(vs,t(N)) for A > 0,t > s >r > 0.



2. Time-inhomogeneous branching processes
e Integral evolution equation (first moment condition)

Suppose that b is a cadlag function of locally finite variation, ¢ is an increasing
continuous function, m is a o-finite measure on (0, co)? satisfying f(f Iz A
2%)m(ds,dz) < oo fort > 0.

In addition for ¢t > 0, Ab(t) + [;° zm({t},dz) < 1.

Theorem 2. Foreveryt, A > 0, there is a unique bounded positive solutionr €
[0,t] — vrt(X) tO

vrt(A) = A — / " as(\)b(ds) — /  vas(V)2e(ds)
/ / _”“O‘)z — 1+ vg t(A)z)m(ds dz).

The solution has the Lévy-Kthintchine representation

[e ]
Vrt(A) = Ry +/ (1 —e M), (dy), t>7r>0,A>0.
0



2. Time-inhomogeneous branching processes
e CB-processes in temporally varying environments

We call X a CB-process in temporally varying environments if it has transition
semigroup (Q-¢)¢>r>0 defined by

/ e_Aer,t(ma dy) = e—mvr,t(k)’ >\7 t Z o, @)
0

where the cumulant semigroup (vy.¢):>0 is determined by

Vrt(A) = A — & (vt (X)) ((r 2]), ®)

and the branching mechanism ¢ has the representation: for f € B(R4)t
and B € #(R4),

$(f)(B) = /B F(s)b(ds) + /B £2(s)c(ds)
+ /B /Ooo (e_f(s)z -1+ f(s)z) m(ds,dz), 9)

where b, ¢, m satisfy the preceding conditions.



2. Time-inhomogeneous branching processes
e CB-processes in temporally varying environments

e Stochastic equations
t t X
X, = cc—/ bXs_ds+\/£/ / W (ds, du)
0 0 0

t oo Xq_ B
+/ / / zN (ds,dz,du).
o Jo Jo



2. Time-inhomogeneous branching processes
e CB-processes in temporally varying environments

e Stochastic equations

X = :c—/ bX._ds + V2 / / W (ds, du)

+// /3_zN(d3,dz,du).
o Jo Jo

W (ds, du): time-space white noise with intensity 2¢(ds)du;
M (ds, dz, du): compensated Poisson random measure with intensity 1 (ds, dz)du.

The noises are independent.



2. Time-inhomogeneous branching processes
e CB-processes in temporally varying environments
e Stochastic equations

Under some condition, we can prove that there is a unique positive strong solution
to

t t X
X = :c—/ Xs_b(ds)-l—/ / W (ds, du)
0 o Jo

t oo Xq_ _
—|—/ / / zM (ds,dz,du), (10)
o Jo Jo

and the solution is a CB-processes in temporally varying environments with branch-
ing mechanism ¢.



2. Time-inhomogeneous branching processes
e CB-processes in temporally varying environments

e Stochastic equations

Define J,,, = {t > 0 : m({t} x (0,00)) > 0} (non-random) and J¢, =
(0, 00)\ I



2. Time-inhomogeneous branching processes
e CB-processes in temporally varying environments
e Stochastic equations

Define J,,, = {t > 0 : m({t} x (0,00)) > 0} (non-random) and J¢, =

(0, 00)\ I
/Ot /Ooo /OXS_ (e, s, )

t oo Xq_ _
- M*°(ds,dz,du) + s9
/0/0 /0 z (ds,dz,du) Z I3

s<t,s€Jm

where M¢(ds, dz,du) = 1., (s)M (ds,dz, du) and

5 = / ” / T M ({5}, dz, du)

oo Xq_ oo
= / / zM ({s},dz,du) — Xs_ zm({s},dz), for s € J,,.
o Jo 0
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